
On Deflations in Extended QR

Algorithms

Thomas Mach Raf Vandebril

Report TW634, September 2013

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

On Deflations in Extended QR

Algorithms

Thomas Mach Raf Vandebril

Report TW634, September 2013

Department of Computer Science, KU Leuven

Abstract

In this paper we discuss the deflation criterion used in the extended QR algo-
rithm based on the chasing of rotations. We show that this deflation criterion
can be considered to be optimal with respect to absolute and relative perturba-
tion of the eigenvalues.

Further, we present a generalization of aggressive early deflation to the ex-
tended QR algorithms. Aggressive early deflation is the key technique for the
identification and deflation of already converged, but hidden, eigenvalues. Often
these possibilities for deflation are not detected by the standard technique. We
present numerical results underpinning the power of aggressive early deflation
also in the context of extended QR algorithms. We further generalize these
ideas by the transcription of middle deflations.

Keywords : extended QR algorithms, deflation, perturbation bounds, aggres-
sive early deflations, middle deflations, rotations, extended Hessenberg matrices
MSC : Primary : 65F15, Secondary : 15A18.

ON DEFLATIONS IN EXTENDED QR ALGORITHMS∗

THOMAS MACH† AND RAF VANDEBRIL†

Abstract. In this paper we discuss the deflation criterion used in the extended QR algorithm
based on the chasing of rotations. We show that this deflation criterion can be considered to be
optimal with respect to absolute and relative perturbation of the eigenvalues.

Further, we present a generalization of aggressive early deflation to the extended QR algorithms.
Aggressive early deflation is the key technique for the identification and deflation of already con-
verged, but hidden, eigenvalues. Often these possibilities for deflation are not detected by the stan-
dard technique. We present numerical results underpinning the power of aggressive early deflation
also in the context of extended QR algorithms. We further generalize these ideas by the transcription
of middle deflations.

Key words. extended QR algorithms, deflation, perturbation bounds, aggressive early defla-
tions, middle deflations, rotations, extended Hessenberg matrices

AMS subject classifications. 65F15, 15A18

1. Introduction. In a series of papers [2,20–22] Aurentz, Watkins, and Vande-
bril present a generalization of Francis’s implicitly shifted QR algorithm [9,10] and its
derivatives. They replace the Hessenberg matrix by its QR decomposition, where the
unitary factor Q is a product of n− 1 rotations, with n the dimension of the matrix
under consideration. These rotators are not necessarily ordered in the same way as for
Hessenberg matrices and thus the matrices are called extended Hessenberg matrices.
The usage of different orderings, which can be adaptively changed during the QR al-
gorithm, can reduce the number of iterations by almost 50% in special cases, see [20].
This huge reduction origins from the fact that the Krylov subspace determining the
convergence of Francis’s QR algorithm is replaced by a rational Krylov subspace [21].

The replacement of the Hessenberg matrix by the QR decomposition of an ex-
tended Hessenberg matrix has the consequence that the standard deflation criterion
in Francis’s QR algorithm,

|H(k + 1, k)| ≤ ε ‖H‖F or |H(k + 1, k)| ≤ ε (|H(k, k)|+ |H(k + 1, k + 1)|) ,

see, e.g., [1], cannot be applied anymore. Watkins and Vandebril use a deflation
criterion based on almost diagonal rotators. An almost diagonal rotator is replaced
by a diagonal matrix. In the consequence the product of rotators and upper triangular
matrices has a zero block below the diagonal and thus the problem can be split into
two smaller problems. So far there is no theoretical explanation for the usage of this
criterion. In Section 2 we prove that this is indeed a very good strategy, since the
relative perturbation of (small) eigenvalues is bounded by the conditioning of the
eigenvalue.

∗The research was partially supported by the Research Council KU Leuven, projects CREA-13-012
Can Unconventional Eigenvalue Algorithms Supersede the State of the Art (CUASSA), OT/11/055
Spectral Properties of Perturbed Normal Matrices and their Applications, CoE EF/05/006 Optimiza-
tion in Engineering (OPTEC), and fellowship F+/13/020 Exploiting unconventional QR-algorithms
for fast and accurate computations of roots of polynomials, by the DFG research stipend MA
5852/1-1, by the Fund for Scientific Research–Flanders (Belgium) project G034212N Reestablishing
Smoothness for Matrix Manifold Optimization via Resolution of Singularities, and by the Interuni-
versity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office, Belgian
Network DYSCO (Dynamical Systems, Control, and Optimization).

†Department of Computer Science, KU Leuven, 3001 Leuven (Heverlee), Belgium.
({thomas.mach,raf.vandebril}@cs.kuleuven.be).

1

2 T. MACH AND R. VANDEBRIL

The evolution of the QR algorithm in the last 60 years have brought us new
ideas for deciding when and how to deflate the matrix. In particular the aggressive
early deflation [6] has lead to reductions of runtime between 5% and 25% on average
and up to 75% for special cases [13, 14]. The effect of aggressive early deflation on
the convergence was investigated in [15]. The aggressive early deflation has been also
used within the QZ algorithm [12], for palindromic eigenvalue problems [16], and more
recently for accelerating dqds, a solver for tridiagonal eigenvalue problems [18]. In
Section 3 we show how to use the concept of aggressive early deflation in the setting
of extended QR algorithms. In Section 4 we present numerical results showing that
aggressive early deflation can reduce the number of iterations and the runtime of the
extended QR algorithm.

There have been attempts to use the ideas of aggressive early deflation for middle
deflations [5]. We also apply the concept of middle deflations to the extended QR
algorithm, see Section 5. We present an adaptive determination of deflation window
and demonstrate its success for random matrices in numerical experiments. Even if
this approach fails for general matrices, we believe that extended Hessenberg matrices
are a valuable contribution to the, so far unsuccessful, concept of middle deflations
and thus this is of interest for the reader, too.

The article assumes that the reader is familiar with Francis’s QR and extended
QR algorithms, we do, however, repeat some of the important facts on handling
rotations in Subsection 1.2 and give a short sketch of the extended QR algorithm in
Subsection 1.3.

1.1. Notation. In this paper we use the following notation: matrices are de-
noted by upper case letters A, the lower case Greek letters λ, µ stand for eigenvalues,
upper case Greek letters Λ for sets of eigenvalues, with λ(A) the eigenvalues of A,
and lower case letters for complex scalars. In Section 2 we use the lower case letters
v, w, x, and y also for eigenvectors. The Hermitian conjugate of a matrix A is denoted
by a superscripted H: AH . The colon notation is used to select submatrices ranging
from rows i to j and columns k to `: A(i : j, k : `); and the shorthand notation
G(i : j) := G(i : j, i : j). If we want to denote the sparsity pattern of a matrix,
then we use × for arbitrary in general non-zero entries and ⊗ to highlight particular
entries.

1.2. Preliminaries. The extended QR algorithm is based on the QR factoriza-
tion, where the Q is factorized in n− 1 rotators. Each of these rotators is a identity
matrix, where we replaced a 2 × 2 submatrix on the diagonal by a unitary matrix[

c s
−s c

]
, with |c|2 + |s|2 = 1. These matrices are often called Givens or Jacobi rota-

tions [11], for brevity we call them rotators. We denote these rotators by �� , where
the arrows point to the rows where we have embedded the 2× 2 unitary matrix. The
arrows also indicate the rows of a matrix on the right of the rotator that are changed
by applying the rotator to this matrix. If the rotators consumes too much space in
this notation we compress it: A line shows the zigzag-shape and dot • represents a
rotator acting on the neighboring rows, e.g.,

××××××
×××××
××××
×××
××
×

=

��
��

��
��
��

××××××
×××××
××××
×××
××
×
.

The ordering of the rotators, e.g., symbolized through the black line in the right
diagram, is called the zigzag-shape or zigzag-pattern of the matrix. In this example
the pattern contains, from top to bottom, a short descending sequence of only two

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 3

rotators, followed by an ascending sequence of three rotators and a final descending
sequence of two rotators. The pattern above is also described by the selection vector[
` r r `

]
. The first ` represents that the rotator above of the second is on the

left-hand side of the second. The next r means that the second rotator is on the
right-hand side of the third, and so forth.

We further define that the rotator Gi acts on row i and i+ 1, with

Gi(i : i+ 1) =

[
ci si

−si ci

]
.

If a matrix A has a QR decomposition of the form A = Gτ(1)Gτ(2) · · ·Gτ(n−1)R, with
τ a permutation of (1, . . . , n − 1) and R an upper triangular matrix, then we call
this matrix an extended Hessenberg matrix because of the link to extended Krylov
subspaces, see, e.g., [17]. Further we call A reduced if at least one Gi is a diagonal
matrix, meaning ∃i ∈ {1, . . . , n− 1} : si = 0.

The factorized QR representation of a matrix is a powerful representation, since
we can perform several operations with the rotators. We will now briefly mention the
most important ones. The product of two rotations is again a rotation; this means
that we can fuse two rotators: �� �� = �↪→� �� = �� , where the tiny arrow marks the fused
rotation. If one applies the rotator Gi from the left to an upper triangular matrix,
then we generate a bulge in position (i + 1, i). By applying a rotation G̃i from the
right, which acts on the columns i and i + 1, one can eliminate this bulge. In this
manner a whole zigzag-shape can be passed one by one through the upper triangular
matrix, e.g.,

××××××
×××××
××××
×××
××
×

=

��
��

��
��
��

××××××
×××××
××××
×××
××
×

��
��

��
��
��

.

Every unitary matrix Q ∈ Cn×n can be factored in 1
2n(n − 1) rotators. These

rotators can be arranged in, e.g., two pyramidal shape [20]:

Q =

××××××
××××××
××××××
××××××
××××××
××××××

=

��
�� ��

�� �� ��
�� �� �� ��

�� �� �� �� ��
α

=

�� �� �� �� �� α

�� �� �� ��
�� �� ��
�� ��
��

A-pyramidal shape V-pyramidal shape

,

where α stands for an identity matrix where one diagonal entry is replaced by α =
det(Q) with |α| = 1. The α is not part of the pyramidal shape. If the pyramidal
shape points up, then we called it an A-pyramidal shape, otherwise a V-pyramidal
shape. The special case for n = 3 provides an important operation; we can turnover
a pattern of three rotations, like

�
�

�
�� � =

� ��
�

�
� .

In this paper we will also use another transformation of three rotations, which
has not been used in the context of extended QR algorithms. We will use that

�
�

�
�� � =

� � �� �
� .

4 T. MACH AND R. VANDEBRIL

Applying this identity twice yields

�
�

�
�

�
� �

�� �
=

� � �� �

�
�

�� �
=

� � �� �

�
�

�� �
=

� � � � �� �
� �

�
.

If we have a unitary matrix × a b
× × c
× × ×

 ,

then we use the first rotator to annihilate c, the second for the updated b and the last
one for the updated a. The remaining matrix is a unitary, upper triangular matrix
and thus diagonal. We will call this wedge-to-broadhead transformation. Analog to
the pyramidal shapes we call the wedge above an A-wedge and the broadhead an
V-broadhead, so that the transformation is an A-wedge-to-V-broadhead one.

1.3. Extended QR Algorithm. In this subsection we will provide a short
sketch of the extended QR algorithm. For details we refer the reader to [20] and [22].
The first step in the extended multishift QR algorithm is to bring the matrix in
extended Hessenberg form. Then we perform implicit QR steps until all eigenvalues
are found. Such an implicit QR step consists of the bulge generation, the bulge
chasing, and finally the removal of the bulge, by merging it into the zigzag-pattern.

For the bulge generation we fix a polynomial, e.g.,

p(A) = (A− ρ1I)(I − ρ2A
−1) · · · (A− ρsI),

where we have to choose between positive and negative powers of A depending on
the zigzag-shape. The s shifts can be determined from the trailing s × s submatrix
of A. We then compute x = βp(A)e1, with e1 the first column of the identity matrix.
Based on x we compute s rotators S1, . . . , Ss such that

S−1
1 · · ·S−1

s x = γe1.

For simplicity we will restrict the further explanation to the single shift case, s = 1.
Applying the bulge generating similarity transformation to the matrix A gives:

S−1
1 AS1 = S−1

1

××××××
×××××
××××
×××
××
×

��
��

��
��
��

S1 =

××××××
×××××
××××
×××
××
×

=

�↪→� ��
��

��
��
��

�� ××××××
×××××
××××
×××
××
×

�� �•�
��

��
��
��

,

of which the left rotator gets fused and the right is brought to the left and become the
bulge, marked by a dot. This bulge is now chased to the bottom of the zigzag-shape,
by turnovers, similarity transformations, and passing rotators through the upper tri-
angular matrix. In our example this means:

S−1
1 AS1 =

××××××
×××××
××××
×××
××
×

�� �•�y
��

��
��
��

=

××××××
×××××
××××
×××
××
×

��
�•���

��
��
��

=

××××××
×××××
××××
×××
××
×

��
�•���

��
��
��

.

By a similarity transformation we bring the bulge to the other side, do again a
turnover, and a pass though operation:

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 5

××××××
×××××
××××
×××
××
×

��
�•�y ��
��

��
��

=

××××××
×××××
××××
×××
××
×

��

�•�
��

��
��
��

=

××××××
×××××
××××
×××
××
×

��

�•�
��

��
��
��

.

In the next row the bulge reaches the second bend, where the zigzag-shape changes
direction. We will see that bends move up one row every time a bulge rotator passes
them. This means that the extended QR algorithm preserves the structure of an
extended Hessenberg matrix in a weak sense, since the next iterate is again of extended
Hessenberg form, but with a different zigzag-pattern. Now the next chasing steps:

××××××
×××××
××××
×××
××
×

��
��

�•�y ��
��

��
=

××××××
×××××
××××
×××
××
×

��
��

��
��
��

�•� ⇒

××××××
×××××
××××
×××
××
×

��
��

��
��
��

�•� .

In the next row we have to make a last turnover. Afterwards, we merge the two
rotators in the last row to let the bulge disappear. Here we have the freedom to
choose where we want to place the fused rotator: on the left or right side of the
zigzag-shape. We have

××××××
×××××
××××
×××
××
×

��
��

��
��
��
y�•� =

××××××
×××××
××××
×××
××
×

��
��

��
��
���•�

⇒

××××××
×××××
××××
×××
××
×

��
��

��
��
��

or

××××××
×××××
××××
×××
××
×

��
��

��
��

��
.

The decision where to merge the last rotator influences the convergence properties
of the algorithm. In [21] it has been shown that depending on the decision the
convergence rate is either

|λn − ρ1|
|λn−1 − ρ1|

or

∣∣λ−1
n − ρ−1

1

∣∣∣∣λ−1
n−1 − ρ−1

1

∣∣ .
Using the optimal shape can result in almost halving the number of iterations for
certain examples, see [20]. After we have done several QR iterations some of the
eigenvalues are converged. Of course we do not want to use shifts approximating
already converged eigenvalues. Thus we need to deflate these eigenvalues from the
matrix. This will be explained in details in the next section.

2. Standard Deflation. Infinitely many QR steps lead to convergence to a
block upper triangular matrix. To reduce the matrix size and to free converged shifts
one has to deflate (converged) eigenvalues from the matrix. A reduced extended
Hessenberg matrix allows to split the eigenvalue problem into two smaller ones. Since
our matrix converges to a reduced Hessenberg matrix, but stays often unreduced,
small perturbations are necessary to deflate. In Francis’s QR algorithm one searches
for small subdiagonal entries in the Hessenberg matrix H, which are set to zero.
Typical conditions are

|H(k + 1, k)| ≤ ε ‖H‖F or |H(k + 1, k)| ≤ ε (|H(k, k)|+ |H(k + 1, k + 1)|) , (2.1)

where the latter is tighter and shows better relative accuracy for small eigenvalues,
see, e.g., [13].

In the extended QR algorithm the extended Hessenberg matrix is only available
in the factorized form. This makes it expensive to test for small subdiagonal entries
or submatrices H(k : n, 1 : k) of small norm as one has to compute these elements or
submatrices explicitly. Since the QR decomposition of a reduced Hessenberg matrix
is for instance

6 T. MACH AND R. VANDEBRIL

A =

×××××
××××
×××
××
×

×

×
×

=

��

��
��

×××××
××××
×××
××
×

,

with G2 = I, we can search for almost diagonal Gi. In [20] this deflation criterion is
used, but without presenting a theoretical explanation why it provides good relative
accuracy. Suppose we have an extended Hessenberg matrix in the form

��
��
�•�
��

��

××××××
×××××
××××
×××
××
×

,

where the dot-marked rotator is the identity, then we can deflate this eigenvalue
problem into two smaller problems

Λ

 ��
��

��
��

××××××
×××××
××××
×××
××
×

 = Λ

(
��
��
×××
××
×

)
∪ Λ

(
��

��
×××
××
×

)
.

In the extended QR algorithm one searches for almost diagonal rotators. These ro-
tators are scaled by a diagonal matrix so that they are almost equal to the identity.
Then the matrix is changed by setting the off diagonal entries to zero. This means
we replace

A = Gτ(1)Gτ(2) · · ·Gτ(n−1)R (2.2)

with

Ã = Gτ(1)Gτ(2) · · ·Gτ(i−1)Gτ(i+1) · · ·Gτ(n−1)R (2.3)

if
∥∥I −Gτ(i)

∥∥
2
≤ ε. Of course this perturbs the eigenvalues, but this perturbation to

the spectrum of A can be bounded. The following series of lemmas, theorems and
corollaries contain bounds that are increasingly tight for well conditioned eigenvalues
of small magnitude. The first two should be consider as a “training camp” for the
following ones. We start with a simple application of the Bauer-Fike theorem.

Lemma 2.1. Let A and Ã be defined as in (2.2) and (2.3). Let further A be diag-
onalizable, A = XΛX−1, and λ an eigenvalue of Ã. Then there exists an eigenvalue
µ of A, so that

|λ− µ| ≤ κ2(X)‖Gτ(i) − I‖2‖A‖2, (2.4)

where ‖·‖2 is the spectral norm and κ2(X) the condition number of X and hence the
condition number of the eigenvalue problem in the 2-norm.

Proof. As shown in [3], known as the Bauer-Fike theorem, we have

min
µ∈Λ(A)

|λ− µ| ≤ κ2(X)‖A− Ã‖2,

with X−1AX the Jordan normal form of A. By using the structure of A and Ã we
get

‖A− Ã‖∗ ≤ ‖Gτ(1) · · ·Gτ(i−1)‖∗ ‖Gτ(i) − I‖∗ ‖Gτ(i+1) · · ·Gτ(n−1)‖∗ ‖R‖∗
≤ ‖Gτ(i) − I‖∗ ‖R‖∗
≤ ‖Gτ(i) − I‖∗ ‖A‖∗, (2.5)

where ‖·‖∗ is a unitarily invariant norm, e.g., ‖·‖2. Combining both inequalities
completes the proof.

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 7

Hence we have a good absolute perturbation bound. But with a little additional
effort we can improve this to a relative perturbation bound as the following lemma
shows.

Lemma 2.2. Let A and Ã be defined as in (2.2) and (2.3). Let further A be
nonsingular and diagonalizable A = XΛX−1 and λ be an eigenvalue of Ã. Then there
exists an eigenvalue µ of A, so that

|λ− µ|
|µ|

≤ κ2(X)
∥∥Gτ(i) − I

∥∥
2
, (2.6)

where ‖·‖2 is the spectral norm and κ2(X) the condition number of X and hence the
condition number of the eigenvalue problem of A in the 2-norm.

Proof. In [8, Theorem 2.3] it has been shown that for diagonalizable A, with
A = A1A2, it holds that

min
i

|λ− µi|
|µi|

≤ κ2(W)
∥∥A−1

1 EA−1
2

∥∥
2
, (2.7)

whereW is the eigenvector matrix of A2A1 and E = A−Ã. We set A1 = Gτ(1) · · ·Gτ(i)

and A2 = Gτ(i+1) · · ·Gτ(n−1)R and thus have A−1
1 EA−1

2 = I − G−1
τ(i). The unitarily

invariance of the 2-norm ensures that

‖I −G−1
τ(i)‖2 = ‖G−1

τ(i)(Gτ(i) − I)‖2 ≤ ‖Gτ(i) − I‖2.

Since A1A2 = A = XΛX−1 we have

A2A1 = A−1
1 A1A2A1 = A−1

1 XΛX−1A1

and hence W = A−1
1 X. Since A−1

1 is unitary κ2(W) = κ2(X).
The estimation in Lemma 2.2 is a relative bound, but still the error estimator can

be entirely wrong for matrices with well conditioned small eigenvalues and bad condi-
tioned large eigenvalues. The bad conditioned eigenvalues lead to a bad conditioning
of the whole eigenvalue problem. This weakness will be healed with the following
theorem. We use the same approach as in [8, Corollary 2.2 and Theorem 2.3].

It is well known that the perturbation of single eigenvalues can be estimated with
the following linearization, see, e.g., [11] or [23].

Theorem 2.3. Let µ be an eigenvalue of A with multiplicity 1, having right
eigenvector x, and left eigenvector y. Let E be a perturbation of the form εF , with
‖F‖2 = 1. For µ = µ(ε) ∈ Λ(A+ E) with µ(0) = λ, we have

|µ− λ| ≤
‖E‖2
yHx

+O(‖E‖22).

In (2.5) we have seen that for our deflation perturbation we have

‖E‖ = ‖A− Ã‖2 ≤
∥∥Gτ(i) − I

∥∥
2
‖A‖2 ,

and thus

|µ− λ| ≤
∥∥Gτ(i) − I

∥∥
2
‖A‖2

yHx
+O

(∥∥Gτ(i) − I
∥∥2
2
‖A‖22

)
.

8 T. MACH AND R. VANDEBRIL

Analog to [8, Corollary 2.2] we make a relative estimator out of Theorem 2.3.
Theorem 2.4. Let A be invertible and λ an eigenvalue of A with multiplicity

1, right eigenvector x, and left eigenvector y. Let further E be a perturbation of the
form εF , with ‖F‖2 = 1. For µ = µ(ε) ∈ Λ(A+ E) with µ(0) = λ, we have

|µ− λ|
|λ|

≤
∥∥A−1E

∥∥
2

yHx
+O(

∥∥A−1E
∥∥2
2
).

Proof. Let (x̂, µ) be an eigenpair of A+ E, so that (A+ E)x̂ = µx̂. This can be
reformulated as x̂ = µA−1x̂ − A−1Ex̂. We set A = µA−1 and E = −A−1E. Hence
we have

(A+ E)x̂ = x̂.

Thus 1 is an eigenvalue of A + E. The eigenvalues of A are µ/λi with the same
eigenvectors as A. We apply Theorem 2.3 to A, A+ E, and the eigenvalue 1.

In the next theorem we use the argumentation from [8, Theorem 2.3] to get a
similar result.

Theorem 2.5. We make the same assumptions as in Theorem 2.4. If A = A1A2

and A1 and A2 invertible, then

|µ− λ|
|λ|

≤ ‖A−1
1 EA−1

2 ‖2
yHx

+O
(
‖A−1

1 EA−1
2 ‖22

)
.

Proof. We set Â = A2AA−1
2 and Ê = A2EA−1

2 . The eigenvalue µ is also an

eigenvalue of Â with right eigenvector v = A2x and left eigenvector wH = yHA−1
2 .

We apply Theorem 2.4 and get

|µ− λ|
|λ|

≤ ‖Â−1Ê‖2
wHv

+O
(
‖Â−1Ê‖22

)
.

Since Â−1Ê = A2A
−1EA−1

2 = A−1
1 EA−1

2 and wHv = yHA−1
2 A2x = yHx we have

thus proved the theorem.
We now apply this to the same A1 and A2 as in Lemma 2.2.
Corollary 2.6. Let A and Ã be defined as in (2.2) and (2.3). Let further A be

nonsingular, and let λ be a single eigenvalue of Ã. Then there exists an eigenvalue µ
of A, so that

|µ− λ|
|λ|

≤
‖I −Gτ(i)‖2

xHy
+O

(
‖I −Gτ(i)‖22

)
,

with x and y as above.
Proof. We set A1 = Gτ(1) · · ·Gτ(i) and A2 = Gτ(i+1) · · ·Gτ(n−1)R and thus have

A−1
1 EA−1

2 = I −G−1
τ(i). We finally apply Theorem 2.5.

Lemma 2.2 and Corollary 2.6 provide us optimal relative perturbation bounds
and estimations respectively for deflations based on almost diagonal rotators. The
bounds depend only on the norm of the perturbation and a condition number of
the individual eigenvalue. Hence we now know that the deflation criterion based
on almost diagonal rotators is not perturbing the eigenvalues more than necessary.

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 9

This deflation procedure is simple and additionally provides perfect relative accuracy.
Hence it is not necessary to take other rotators, R, or even A into consideration.

For the standard deflation procedure in Francis’s QR algorithm based on the de-
flation criteria (2.1) one can also provide bounds on the perturbation matrix E. These
bounds can be used to assess the absolute accuracy of the eigenvalues by applying
the Bauer-Fike theorem or Theorem 2.3. However, [8, Theorem 2.3] leading to the
relative bound in (2.7) and Theorem 2.5 cannot be applied here, since in general A,
Ã, and E = A− Ã do not have a common factorization differing only in one factor.

Finally, we would like to draw the attention of the reader to the fact that in dqds
and MRRR one is also replacing a matrix, here a tridiagonal, by its factorization,
here a LDU, LDLT , or LU factorization, to improve the relative accuracy of the
computed eigenvalues, see, e.g., [19]. In the extended QR algorithm we do somehow
the same. We also replace the matrix, here an extended Hessenberg matrix, by its
factorization, here the QR decomposition. The primary aim was not the improvement
of the accuracy but of the convergence rate. However, the theorems above show that
the relative accuracy is not reduced by the deflation.

3. Aggressive Early Deflation. In state-of-the-art implementations of Fran-
cis’s multishift QR algorithm one uses besides standard deflations also aggressive early
deflations, which reduce the required CPU time on average by about 15% [13]. In
this section we will transcribe the ideas of aggressive early deflation to extended QR
algorithms. Therefore we start with a short description of aggressive early deflation
for Hessenberg matrices. A detailed description can be found in [6].

3.1. Aggressive Early Deflation for Hessenberg Matrices. The concept
of aggressive early deflation is, among others, based on the observation that a series of
small but non-negligible subdiagonal entries may lead to deflatable, converged eigen-
values, even if none of the subdiagonal entries is below the deflation threshold. In the
Hessenberg form every row is coupled with the neighboring rows by the subdiagonal
element. The aggressive early deflation replace this coupling between neighbors of the
last, say m rows by a coupling with a single, namely the (n − m)th row, making it
easier to deflate rows in the trailing m×m-submatrix.

Assume an upper Hessenberg matrix
××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
×
×
×

A = ,

the marked rectangle (m = 4) is the deflation window. The marked submatrix is
S := A(n −m + 1 : n) and has the Schur factorization S = V TV H . We embed the
unitary matrix V in an identity matrix and call the large matrix Q. Applying Q to
A yields

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
⊗
⊗
⊗

A′ = QHAQ = with Q =

1

. . .

1
V

 .

Obviously this does not affect the eigenvalues. The matrix A′ is of upper Hessenberg
plus spike form, where the circled entries form the spike. This spike makes the main
difference between A and A′, since in A′ the last four rows are only coupled with the

10 T. MACH AND R. VANDEBRIL

last row in front of the deflation window. This allows to remove any of these rows if
the entry in the spike is small. Note that a small entry in the spike corresponds to a
converged eigenvalue. The main advantage is that one deflates earlier. Thus the next
iteration is cheaper since the new matrix is smaller. Furthermore already converged
shifts will not be used again in the next iteration and new shifts can be used to force
the convergence to other eigenvalues. This is in particular important in multishift
implementations.

Essentially the aggressive early deflation consists of the following five steps:

1. Choose and compute a trailing submatrix S of A.
2. Compute the Schur decomposition of S = V HTV .
3. Apply V to A and compute the “spike”.
4. Deflate within the “spike”.
5. Restore the original form.

Aggressive early deflation is more expensive compared to standard deflation. Ap-
plying the matrix V from the Schur decomposition to A and restoring the original
form involve updates of the last m columns of A by an m ×m matrix, leading to a
complexity of O(nm2).

3.2. Aggressive Early Deflation for Extended Hessenberg Matrices. We
will now transcribe the five steps of aggressive early deflation one-by-one. The first
steps are almost the same for extended Hessenberg matrices. Computing the Schur de-
composition of a small matrix in QR decomposition is done recursively by an extended
QR algorithm. The spike will be replaced by a special pattern revealing the coupling
properties of the spike and allowing to easily deflate the converged eigenvalues.

1. Computing S. Assume our matrix A has the form

A =

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

The rectangle is again the deflation window. The rotators inside the deflation window
are marked with red dots, ◦. If the trailing rotators are on the left of the last black
rotator, then one can perform a similarity transformation to bring the trailing rotators
to the other side followed by passing them through the upper triangular. This is shown
in this example:

A =

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

=

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

Thus one can easily ensure that the trailing rotators are between the previous
rotator and the upper triangular matrix.

2. Schur Decomposition of S. Compute the Schur decomposition for this subma-
trix by using the extended QR algorithm without aggressive early deflation:

S =

��
�

�
�

�

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 = V TV H .

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 11

As mentioned in Subsection 1.2 the matrix V can be factored in rotators arranged in
a pyramidal shape:

V =

�
�

�
�

�
�

�
�

�� � �
.

3. Computing the Spike. Replace now the lower right submatrix by its Schur
decomposition, and write A as

A =

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

��
��

�� ��
��
��

��
��

�� ��
��
��

.

By a similarity transformation one can bring the pyramid on the right-hand side to
the left,

A′ =

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

��
�×�

�×� �×�
��
��

��
��

�� �×�
�×�
�×�

.

Since the right pyramid is the Hermitian transpose of the left pyramid the rotators
marked with a cross annihilate each other. We finally end up with the following
scheme

A′ =

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

The remaining most outer rotators of V and V H form a large A-wedge and would
vanish if the last rotator in front of the deflation window would be the identity. So
they are the analog to the spike in the aggressive early deflation in the Hessenberg
QR algorithm, which vanishes if the subdiagonal entry at the top of the spike is zero.
The rows are still coupled with their neighbors, but this will be changed now.

We use the A-wedge-to-V-broadhead transformation recursively and end up with

�•
�

�
�

�
� �

�
�

� �
�� �

=

� � �� �

�
�

�
�

� �
�� �

=

� � � � �� �
� �

�
�

�� �

=

� � � � � � �� �
� �

� �
�

, (3.1)

where the last rotator partially outside the deflation window is marked with a dot.
The middle rotation becomes often relatively soon close to an identity1 and thus can
be deflated. We will call the large broadhead at the end also a V-broadhead and the
complete transformation also an A-wedge-to-V-broadhead transformation.

The advantage of the V-broadhead is that the trailing rows are again linked only
with the top row and no longer with their neighbors.

1A side effect is that for an efficient implementation it is necessary to store and handle ci − 1,
with ci the diagonal entry of this rotation, separately to avoid cancellation.

12 T. MACH AND R. VANDEBRIL

4. Deflate within the “Spike”. We now have a broadhead, our replacement for
the spike, where the trailing rows of A are sufficiently uncoupled to easily deflate the
corresponding eigenvalues. We start with the rotator in the middle of the broadhead
shape. If this rotation is almost diagonal, then we deflate this rotator and merge
the next inner rotators. This is repeated until the rotator in the middle is no longer
almost diagonal. We now test the other rotators. Since the kth rotation is close to
diagonal if and only if the q + 1− kth rotation, q the number of rotators left, is close
to diagonal, as Lemma 3.1 shows, it is sufficient to test half of the remaining rotators.
This means that searching for converged rows in the broadhead shape is not more
expensive then in the spike in the Hessenberg case.

Lemma 3.1. Assume three rotators are given

�
�

�
�� � , (3.2)

where the left rotation is the Hermitian transpose of the right one. These rotators can
be transform into

� � �� �
� . (3.3)

The left and right rotation of this new decomposition of the unitary matrix are both
diagonal or none of the rotations is diagonal.

Proof. Let the rotations in (3.2) be1 c s
−s c

 d t

−t d
1

1 c −s
s c

and e u

−u e
1

 f v
1

−v f

 g w
−w g

1

the rotations in (3.3). We have two factorizations of the same matrix. Multiplying
them out yields e = g. If |e| = |g| = 1, then |u| = |w| = 0, since both factors are
rotators.

Removing almost diagonal rotators reduces the size of the eigenvalue problem.
The perturbation error is bounded in the same way as described in Section 2.

For smallm we observed in almost all examples that the middle rotator is diagonal
if at least one rotator is diagonal. This makes the reduction easy, since we can start
in the middle. After removing the middle rotator the next two are merged and the
product is tested again. This is different for larger m. For large m we sometimes
observe that other rotators are diagonal and the middle one is not. This makes
reordering of the eigenvalues in the Schur factorization and a recomputing of the
wedge and the broadhead shaped rotators necessary. This is expensive and has not
been implemented for the numerical experiments in the following section.

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 13

5. Restore the Original Form. After we have deflated all diagonal rotators we have
to restore the original pattern of rotators. Therefore we transform the broadhead back
into the wedge form. This is simply the reverse process from the one in step 3.

The wedge consist of an ascending and a descending sequence of rotators. These
two sequences have to be merged into one zigzag-shape according to the selection
vector. This is now explained by an example, which is also visualized in the next
diagram. Let the selection vector of the trailing rotations start with an r. Then we
have to pass the descending sequence through the upper triangular and bring the
rotators by similarity transformation to the other side. The rotators in the last row
of both sequences are merged. This reduces the length of the descending sequence by
one. Afterwards we pass the descending sequence through the ascending sequence.
We now have fixed the first of the trailing rotators in the correct position. Let the
next entry in the selection vector be an `. Then we bring the ascending sequence
to the other side, pass it through the upper triangular, merge the last rotators, and
bring the ascending sequence into the original position by turnovers. These steps are
summarized in the following diagram, which only shows the last m+1 rows/columns
of the matrix:

××××××
×××××
××××
×××
××
×

⇒
××××××
×××××
××××
×××
××
×

⇒
××××××
×××××
××××
×××
××
×

⇒

××××××
×××××
××××
×××
××
×

⇒
××××××
×××××
××××
×××
××
×

⇒
××××××
×××××
××××
×××
××
×

⇒ . . .

The description above shows that for extended Hessenberg matrices some steps of
aggressive early deflation are more complicated than for Hessenberg matrices. How-
ever, the complexity is the same. The most expensive computations are the appli-
cation of V to A and the restoring of the zigzag-shape in the trailing rotators. The
application of V updates the trailing m columns with an m×m matrix, which takes
O(nm2) operations. During the restoring one has to transfer up to 1

2m(m−1) rotators
through the upper triangular matrix R. Each of these transfers changes O(n) entries
in R. Hence the costs are also bounded by O(nm2). If the eigenvectors are needed,
then we have to update a matrix storing all unitary transformation while we bring
the rotators to the other side, this can also be done in O(nm2) operations. All the
other computations involve at most m2 rotators and the trailing m×m submatrix of
R. Under these computations the Schur decomposition and the decomposition of V
into 1

2m(m− 1) rotators are the most expensive, both O(m3).

3.3. Predicting Deflations. The costs of aggressive early deflation are bounded
by O(nm2). This is compared to the O(n2) operations per iteration cheap, but, nev-
ertheless, we want to perform these computations only if the probability of a deflation
is high enough. We will now briefly repeat the argumentation from [6, Section 2.8] for
the Hessenberg case, which delivers the absolute value of the last entry in the spike.
Based on this argumentation we show a heuristic to predict how many deflations one
can expect within a given deflation window.

We summarize the most important steps in this paragraph. First, one takes the
Schur decomposition of S = V TV H . One can show that the last entry of the spike is
z = A(n−m+1, n−m)V (1,m). Let T (n, n) = λ be an eigenvalue of S. Then S−λI is
a singular, unreduced Hessenberg matrix. Further, let UR be the QR decomposition
of S − λI. The U is also an unreduced Hessenberg matrix and can be written as a
descending series of rotators GS

1 · · ·GS
m−1. Since the last column of U and the last

14 T. MACH AND R. VANDEBRIL

column of V are both normalized left eigenvectors of S, we have |U(1, k)| = |V (1, k)|.
Thus the absolute value of z is

|z| = |A(n−m+ 1, n−m)|

∣∣∣∣∣
m−1∏
i=1

si

∣∣∣∣∣ ,
where si is the off-diagonal entry of GS

i . If
∣∣∣∏m−1

i=1 si

∣∣∣ is small, say smaller than

machine precision, then one can deflate the λ from A.

In [6] the argumentation is now continued to link the product to the Hessenberg
matrix A. This is not useful for our purpose, since in the extended QR algorithm we
have a QR decomposition of S, but not of S−λI, available. The following heuristic is
based on the QR decomposition of S, since the computation of the QR decomposition
of S − λI is too expensive. We take the QR decomposition of A, which gives us also
a QR decomposition of S, and compute

p =
n−1∏

i=n−m

|si| . (3.4)

We observe that aggressive early deflation is successful for small values of p. For ε
equal to double precision accuracy, n = 200, and m = 25, we observed for p >1e−13
never an additional deflation opportunity. However, p <1e−18 was almost every time
followed by a deflation. In the range in between we observed that deflations become
rarer with growing p. These indicating values of p might depend, among others, on
n, m, and the deflation accuracy ε.

We have no complete theoretical explanation for the use of p, however, we want to
give the following heuristic explanation: Let A(n−m+1 : n) be the trailing submatrix
we investigate. Every rotator has the form

Gi =

[
ci si

−si ci

]
.

This means we multiply a row with a factor of absolute value |ci| and add an |si|
multiple of the neighboring row. Thus the value p is an indicator for the coupling of
the last row with the (n−m)th row. During the aggressive early deflation procedure
we change the matrix in a way that the rows from n −m + 1 to n are only coupled
with row n − m. Thus the value p tells us when this coupling is weak and exactly
such a weak coupling is the basis for the deflation.

4. Numerical Experiments. In this section we use the MATLAB R© implemen-
tation of the multishift QR algorithm that has been used in [21]. We check for standard
deflation in all rotations with a threshold of 4.4409e−15. The aggressive early deflation
additionally tests the trailingm×m part for deflation opportunities. The used random
matrices are generated by the MATLAB command rand(n,n)+sqrt(-1)*rand(n,n).
These matrices have random complex entries with real and imaginary part between
0 and 1. We choose a random zigzag-shape for the rotators, where the direction is
changed with a probability of 30%. The MATLAB function schur is used to compute
the Schur decomposition in the aggressive early deflation. As soon as the deflation
makes the matrix smaller than a predefined size we stop the process and compute
the remaining eigenvalues using a plain double shift implementation of the extended

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 15

QR algorithm. The finally remaining 2 × 2 blocks on the diagonal are triangular-
ized using the MATLAB function eig. The tests have been performed on an Intel R©

CoreTMi5-3570 (3.40GHz). All the presented results are averages over three runs.
It is known that extended QR algorithms suffer from shift blurring analog to the

shift blurring observed in the QR algorithm, see [21]. For testing the aggressive early
deflation we need multishift steps with a large number of shifts, since the aggressive
early deflation benefits from simultaneous convergence to many eigenvalues. To avoid
shift blurring we compute s shifts at once, but chase only bulges of size 6 or smaller.
Hence we chase in each iteration s/6 times a bulges of size 6. Further implementations
might improve this by packing the bulges tighter and using blocked updates as it is
done in recent implementations of Francis’s QR algorithm.

We test our algorithm with different matrix dimensions. For n = 50 we did not
observe an advantage using aggressive early deflation. For n = 500 we stop the usage
of aggressive early deflation by a size of 250. In Figure 4.1(a) the number of iterations
before aggressive early deflation is turned off multiplied with the number of shifts is
shown for different pairs of m, the number of shifts, and s, the size of the deflation
window. This product is a measure for the number of bulges that are chased through
the matrix. One can see that more shifts in each step increase this number, while
aggressive early deflation reduces the number. Chasing more bulges requires more
time and so we see this effect also in Figure 4.1(b), where the runtime is plotted.
Larger deflation windows have two effects, they reduce the number of iterations but
increase the costs of the deflation. The point with the minimal number of iterations
corresponds to one of the highest runtimes. We have marked the points from Table 4.1
with black asterisks. The size m of the deflation windows should be chosen between
s and 2s, where s is the number of shifts, to achieve good performance.

For n = 100 we observed a similar behavior as for n = 500, see Figure 4.2. The
advantage of aggressive early deflation is, however, smaller. This is in accordance with
the description of the LAPACK 3.1 implementation of aggressive early deflation for
Hessenberg matrices [7]. In this implementation aggressive early deflation is turned
off for matrices of size 75× 75 or smaller.

The shortest runtime and the lowest number of iteration without aggressive early
deflation is compared with the best results with aggressive early deflation in Table 4.1,
where s is the number of shifts and m the size of the deflation window. In the best
cases of aggressive early deflation we can save up to a third of the runtime. Since we
used a MATLAB implementation partially using much more optimized functions, such
as schur, these results have to be considered preliminary. A high level implementation
of the whole algorithm might show a smaller advantage of aggressive early deflation.

5. Middle Deflation.

5.1. Middle Deflation for Hessenberg Matrices. The ideas of aggressive
early deflation have also been applied to middle deflations [5]. We start again with
a short description of the middle deflation for Hessenberg matrices. The core ideas
are the same as for aggressive early deflation, but the possible gain is much higher.
The main advantage is that a middle deflation splits the matrix into two smaller
ones of comparable size. This makes a middle deflation much more precious than a
deflation at the end of a matrix, since the complexity of the QR algorithm is cubic.
Hence, halving the problem reduces the costs of the remaining problems from O(n3)
to 2 · O((n/2)3) and thus by a factor of 4.

In the Hessenberg case one takes out a submatrix from the middle of the matrix,
computes the Schur decomposition, and applies the similarity transformation from

16 T. MACH AND R. VANDEBRIL

aggressive early deflation
standard deflation only

20
40

0

50

100

0

400

800 ∗

∗

shifts

#
de
fla
tio
n
wi
nd
ow

(a) Number of Iterations · shifts.

20
40

0

50

100

0

200

400
∗

∗

shifts

#
de
fla
tio
n
wi
nd
ow

(b) Runtime in s

Fig. 4.1: The effect of aggressive early deflation for n = 500.

aggressive early deflation
standard deflation only

10
20

0

20
0

200

400

∗

∗

shifts

#
de
fla
tio
n
wi
nd
ow

(a) Number of Iterations · shifts.

10
20

0

20
0

5

10
∗

∗

shifts

#
de
fla
tio
n
wi
nd
ow

(b) Runtime in s

Fig. 4.2: The effect of aggressive early deflation for n = 100.

best without early deflation best with early deflation savings
n s t #it·s s m t #it·s
100 4 6.00 s 215 10 18 5.62 s 223 6% time
100 2 6.42 s 198 2 28 8.60 s 163 18% iterations
500 6 148.49 s 803 20 20 100.45 s 727 32% time
500 2 161.38 s 732 2 70 314.85 s 391 46% iterations

Table 4.1: The effect of aggressive early deflation.

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 17

the unitary factors of the Schur decomposition to the whole matrix. This destroys
also the Hessenberg structure of the matrix and we get the following shape with two
spikes:

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
×
×
×

A = ⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×

×
×

⊗
⊗
⊗
⊗
⊗⊗⊗⊗

.

The two spikes are formed by the circled entries ⊗ of the matrix. If in our example
at least four of these entries are small enough, then we can deflate the problem to
two smaller ones. Unfortunately, such deflations are rare and hard to detect. Also
shift strategies enforcing the occurrence of middle deflation are, to the authors’ best
knowledge, unknown. Nevertheless, we will now present a transcription of middle
deflation to extended QR algorithms based on rotators.

5.2. Middle Deflation for Extended Hessenberg Matrices. Assume we
have given an extended Hessenberg matrix in its QR decomposition, e.g.,

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

We have to do the same five steps as for the aggressive early deflation, see Section 3.1.

In the first step we have to choose the submatrix S. For details on the selection
of the deflation window see the next section describing our preliminary numerical
experiments. In our example the middle three rotators can not be applied to R since
they are blocked by the last three rotators. After passing the trailing three rotators
through the upper triangular we are in the following situation:

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

,

where the rectangle marks the deflation window and thus S. We now use the extended
QR algorithm recursively to compute the Schur decomposition of S, S = V HTV .
Applying V and V H to the upper triangular matrix R and to the whole matrix yields

V HV

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

V V H
,

where the matrices V and V H are embedded in identity matrices. Every unitary
matrix of size m×m can be decomposed in 1

2m(m− 1) rotators in a pyramid shape.
For the unitary matrices on the left-hand side we use an A-pyramid shape and for
the matrices on the right-hand side a V-pyramid shape. Again most of the rotators
annihilate each other. Hence we and up with two wedges, an A-wedge on the left-hand
side and a V-wedge on the right-hand side,

18 T. MACH AND R. VANDEBRIL

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

That is still a situation where all the rows and columns respectively are coupled with
their neighbors. We use again the wedge-to-broadhead transformation from (3.1) to
bring them in a shape, where they are only coupled with the nearest row/column
outside the deflation window. On the left-hand side we get again a V-broadhead and
on the right-hand side an A-broadhead. One can now remove the diagonal rotators
starting with the middle rotation of the broadhead shape. As in middle deflations for
Hessenberg matrices we have to remove m rotators, otherwise we cannot deflate the
problem in two smaller ones. It might also be necessary to reorder eigenvalues in the
Schur decomposition.

If the rotators are not ordered as in our example, then we have to do other steps
to bring them into a suitable shape. If we are in the situation that the first and the
last rotators are on the left-hand side of the middle rotators (red dots ◦), then we do
not have to do any transformation of the shape. We only get the two broadheads on
the same side, e.g.,

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

If the first and the last rotators are on the right-hand side of the middle ones, then
we have to bring the middle rotators by similarity transformation to the other side of
R, e.g,

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

,

and get again the two broadheads on the same side. The last possible situation is
that the first rotators are on the right-hand side of the middle rotators and the last
are on the left-hand side. In this situation one passes the first rotators through the
upper triangular matrix and one gets:

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

⇒

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

In the next section we present preliminary numerical results for the special case
of random matrices.

5.3. Preliminary Numerical Experiments. Let us make the simplifying as-
sumption that the (extended) QR algorithm for an eigenvalue problem of size n costs
cn3 flops. A successful middle deflation splits the matrix A ∈ Cn×n in A1 ∈ Cn1×n1

and A2 ∈ Cn2×n2 , with n1 + n2 ≤ n and n1 ≈ n2. To achieve this splitting we have
to solve an eigenvalue problem of size m. If n1 = n2 = 1

2n, then we save flops for

ON DEFLATIONS IN EXTENDED QR ALGORITHMS 19

m ≤ 3
√
−0.75 · n ≈ 0.9085 · n.

Since the middle deflation procedure involve further computations, we head for a
deflation window of size m ≈ 0.75 · n. We choose the deflation window f : g based on
a variation of (3.4), f and g fulfill

pf,n/2 =

n
2∏

i=f

|si| ≤ ε and pn/2,g =

g∏
i=

n
2

|si| ≤ ε.

Since the solution of the eigenvalue problem in the middle deflation is a very expensive
step it has to be avoided that the middle deflations fail. Thus we add a safety margin
and enlarge the deflation window by 15 indices on both sides.

For the following example we turn off aggressive early deflation.
Example 5.1. Let A ∈ C1500×1500 a be a random matrix. After three multishift

steps with 150 shifts each the first and the last row of A is deflated. Further the middle
deflation prediction suggest that there is a deflation if we use the deflation window
378:1011, which is enlarged to 363:1026. Thus we have to solve a eigenvalue problem
of size 723. The middle deflation is successful resulting in two smaller eigenvalues
problems of size 664 and 621. Based on the above assumption that the extended
QR algorithm costs cn3 flops, the solution of the three eigenvalue problems is more
than 70% cheaper than the solution of the problem of size 1498. Based on the more
realistic estimation of 2n3 + 3n2 + n flops we would save 58% ignoring the additional
computations in the middle deflation procedure. We observed similar behavior for
other random matrices of different size as long as the number of shifts is about 0.1 ·n.

After this successful test we run the same code for two matrices from the matrix
market [4], tols2000∈ R2000×2000 and pde2961∈ R2961×2961.

Example 5.2. After the first iteration with tols2000 the deflation prediction
returns the window 996:1005, which is enlarged to 981:1020. Thus we have to find 40
deflatable rotations in the both broadheads together, but there are only three.

The observations with pde2961 are similar. The deflation prediction returns the
deflation window 1429:1533, with safety margin 1414:1548, after the first iteration,
but we do not find any deflatable rotator.

Hence the deflation prediction fails completely for both matrices.
The choice of deflation windows is the crucial step for middle deflations. The

heuristic prediction investigated here is only partially successful and requires further
investigations.

6. Conclusions. The standard deflation criterion in extended QR algorithms
preserves eigenvalues to high relative accuracy. We have further seen that the ideas
of aggressive early deflation can be transcribed to extended QR algorithms. As in the
classical Hessenberg case this leads to earlier deflations and to a significant reduction
of the number of iterations. Our numerical results show that aggressive early deflation
can reduce also the runtime of the extended QR algorithm. Finally we have seen that
in special case also middle deflations can be used in extended QR algorithms.

Acknowledgemends. We thank David S. Watkins (Washington State Univer-
sity) for his useful comments.

20 T. MACH AND R. VANDEBRIL

REFERENCES

[1] M. Ahues and F. Tisseur, A new deflation criterion for the QR algorithm, LAPACK Working
Note 122, 1997.

[2] J. Aurentz, R. Vandebril, and D. S. Watkins, Fast computation of the zeros of a polynomial
via factorization of the Companion matrix, SIAM Journal on Scientific Computing, 35
(2013), pp. A255–A269.

[3] F. L. Bauer and C. T. Fike, Norms and exclusion theorems, Numerische Mathematik, 2
(1960), pp. 137–141.

[4] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, Matrix
market: A web resource for test matrix collections, in The Quality of Numerical Software:
Assessment and Enhancement, Chapman & Hall, 1997, pp. 125–137.

[5] K. Braman, Middle deflations in the QR algorithm, in Talk at Householder Symposium XVII,
2008.

[6] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. part II: Aggressive
early deflation, SIAM Journal on Matrix Analysis and Applications, 23 (2002), pp. 948–973.

[7] R. Byers, LAPACK 3.1 xHSEQR: Tuning and implementation notes on the small bulge multi-
shift QR algorithm with aggressive early deflation, LAPACK Working Note 187, 2007.

[8] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbations techiques for singular value prob-
lems, SIAM Journal on Numerical Analysis, 32 (1995).

[9] J. G. F. Francis, The QR transformation. A unitary analogue to the LR transformation –
part 1, The Computer Journal, 4 (1961), pp. 265–271.

[10] , The QR transformation – part 2, The Computer Journal, 4 (1962), pp. 332–345.
[11] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins University Press,

Baltimore, MD, USA, 4th ed., 2013.
[12] B. Kågström and D. Kressner, Multishift variants of the QZ algorithm with aggressive early

deflation, SIAM Journal on Matrix Analysis and Applications, 29 (2006), pp. 199–227.
[13] D. Kressner, Numerical methods for general and structured eigenvalue problems, vol. 46 of

LNCSE, Springer, 2005.
[14] , On the use of larger bulges in the QR algorithm, Electronic Transactions on Numerical

Analysis, 20 (2005), pp. 50–63.
[15] , The effect of aggressive early deflation on the convergence of the QR algorithm, SIAM

Journal on Matrix Analysis and Applications, 30 (2008), pp. 805–821.
[16] D. Kressner, C. Schröder, and D. S. Watkins, Implicit QR algorithms for palindromic and

even eigenvalue problems, Numerical Algorithms, 51 (2009), pp. 209–238.
[17] T. Mach, M. S. Pranić, and R. Vandebril, Computing approximate extended Krylov sub-

spaces without explicit inversion, Report TW 623, KU Leuven, February 2013. Submitted.
[18] Y. Nakatsukasa, K. Aishima, and I. Yamazaki, dqds with aggressive early deflation, SIAM

Journal on Matrix Analysis and Applications, 33 (2012), pp. 22–51.
[19] B. N. Parlett, For tridiagonals T replace T with LDLt, Journal of Computational and Applied

Mathematics, 123 (2000), pp. 117–130. Numerical Analysis 2000. Vol. III: Linear Algebra.
[20] R. Vandebril, Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM

Journal on Matrix Analysis and Applications, 32 (2011), pp. 217–247.
[21] R. Vandebril and D. S. Watkins, A generalization of the multishift QR algorithm, SIAM

Journal on Matrix Analysis and Applications, 33 (2012), pp. 759–779.
[22] , An extension of the QZ algorithm beyond the Hessenberg-upper triangular pencil, Elec-

tronic Transactions on Numerical Analysis, 40 (2013), pp. 17–35.
[23] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York,

USA, 1965.

