[algebra bool'ea] Minimalizacja wyrażenia

Odpowiedz Nowy wątek
2006-11-08 17:00
rtp
0

Witam
Czy ktoś wie w jaki sposób wyrażenie:
(~a v b v c)(~a v ~b v c)
zostało zminimalizowane do:
~a v c
??
Przyjmuje: v - alternatywa, ~ - negacja
Próbowałem z rozdzielności koniunkcji wzgledem alternatywy i odwrotnie ale nic mi z tego nie wychodziło. Czy ktoś wie jak to mogę zrobić?
Pozdrawiam.

Pozostało 580 znaków

2006-11-08 17:41
0

Metoda Karnaugha będzie idealna do tego.


<font color="red">Konto porzucone</span>

Dzięki wszystkim forumowiczom za lata wspólnych dyskusji; miłej zabawy w programowanie!
Sławomir 'Szczawik' Włodkowski

Pozostało 580 znaków

2006-11-08 18:21
ertp
0

Heh właśnie problem w tym, że muszę to zrobić algebraicznie :\

Pozostało 580 znaków

2006-11-08 18:43
0

V mozna zastąpić znakiem "+", iloczyn to standardowe mnozenie, u mnie "-" to negacja:

(-a + b + c)(-a + -b + c) =
-a-a + -a-b + -ac + b-a + b-b + bc + c-a + c-b + cc =

// teraz trzeba zastosowac prawa bool'a
// aa = a
// a+a = a
// a + -a = 1
// a * 1 = a

-a + -a(b + -b) + -ac + c(b+ -b) + c =
-a + -a + -ac + c + c =

// dalej te same prawa

-a + -ac + c =

// prawo absorpcji:
// a + ab = a ==> -a + -ac = -a

-a + c

Pozostało 580 znaków

2006-11-08 19:11
LKS
0

To samo z wykorzystaniem praw De Morgana oraz podwójnej negacji:
user image

Pozostało 580 znaków

2006-11-08 20:02
ertp
0

Dzięki za odpowiedź. Jeszcze tylko jedno pytanie: mianowicie gość z układów logicznych zrobił to w dwóch linijkach. Wygląda to tak:
(-a v b v c)(-a v -b v c) = (-a v c)(b v -b) = -a v c.
I teraz próbuje się domyślić jakich praw on tu użył, że wyszło mu to tak szybko. Może ktoś wie jak on to wykombinował ?
Pozdrawiam.

Pozostało 580 znaków

2006-11-08 20:53
0
ertp napisał(a)

Dzięki za odpowiedź. Jeszcze tylko jedno pytanie: mianowicie gość z układów logicznych zrobił to w dwóch linijkach. Wygląda to tak:
(-a v b v c)(-a v -b v c) = (-a v c)(b v -b) = -a v c.
I teraz próbuje się domyślić jakich praw on tu użył, że wyszło mu to tak szybko. Może ktoś wie jak on to wykombinował ?
Pozdrawiam.

banał, działania w algebrze Bool'a są przemienne, wiec a + b = b + a

to nasze (-a + b + c)(-a + -b + c) = ((-a + c) + b)((-a+c) + -b) = (-a + c)(b + -b) = -a + c

Pozostało 580 znaków

Odpowiedz
Liczba odpowiedzi na stronę

1 użytkowników online, w tym zalogowanych: 0, gości: 1, botów: 0