Materiały do nauki DataScience

0

Cześć,
znacie jakieś książki do nauki algorytmów DataScience ? jeśli tak prosiłbym o nazwę oraz autora .

0

Napisz coś więcej, jakich algorytmów, obróbka danych, ML, AI, Deep Learning?

0

Najbardziej zależy mi algorytmach do obróbki danych oraz ml, AI i Deep w swoim czasie.

0

Chcesz się uczyć teorii, czy jakoś bardziej praktycznie?

0

Trochę teorii z dużym naciskiem na praktykę

1

Data Science to nie analityk danych. To pojęcie szersze niż "obróbka" danych i związane z nią narzędzia lub algorytmy. To wyspecjalizowana dziedzina zajmująca się pozyskiwaniem, przetwarzaniem i analityką danych w określonym celu. W celu, który bardzo często nie wynika z danych źródłowych. Jest to dziedzina wymagająca znajomości wielu dyscyplin - od prostej statystyki zaczynając idąc przez matematykę, programowanie, analizę danych, znajomość baz danych po np. umiejętność korzystania z algorytmów sztucznej inteligencji...
Data science to nie dziedzina dla "żółtodziobów", którzy postanowili sobie, że będą się zajmować "DataScience". By zostać specjalistą od "obróbki" tego typu danych najpierw trzeba być specjalistą w dziedzinie, w której te dane będą wykorzystywane. Tutaj trzeba być sprytnym i działać nieszablonowo.

Oczywiście od czegoś trzeba zacząć bo faktycznie by załapać się na takie "stanowisko" trzeba mieć spory warsztat, wiedzę i doświadczenie. Algorytmy, o które pytasz to narzędzia właśnie dla analityka danych. Jak już będziesz super analitykiem wówczas będzie czas by rozejrzeć się za jakąś "działką", w której będziesz mógł wypróbować się jako Data Scientist.
Wówczas znając różne narzędzia do analizy danych będziesz gotów wyszukiwać w morzu danych nowych trendów i korelacji, których jeszcze nikt nie zbadał.

Przykłady zadań z tej dziedziny to:

  • obróbka danych do zdjęcia czarnej dziury ( tak wykorzystano tam AI ale sama znajomość AI nie robi z Ciebie jeszcze DataScientist ) ;
  • obróbka danych z wielkiego zderzacza hadronów ( analiza i gromadzenie Petabajtów danych w ciągu ułamków sekundy ) ;
  • analiza monitoringów miejskich ( i nie mowa tu o monitoringu w Słupsku ) ;

Piszę o tym by zwrócić uwagę, że kolejne bardzo wymagające stanowisko zaczyna być dewaluowane. Tak jak uważam, że nie każdy, kto robi strony w HTML i JS jest programistą tak samo uważam, ze nie każdy analityk danych zasługuje na miano Data Scientist. Należy bronić pozycji i znaczenia takich pojęć bo za chwilę będą się tym tytułować ludzie co pracują z bazą mySQL tylko dlatego, że ta ma więcej niż 5 milionów rekordów.

0

A dlaczego ksiazki, w dzisiejszej epoce digital...

  1. crash course od googla o tu
  2. tutoriale i kursy na kaggle, potem mozna pocwiczyc troche na jakichs testowych rywalizacjach, tu poduczysz sie scikit-learn, keras, pandas, numpy, jakiejs wizualizacji jak seaborn itd. Zaleta jest to ze jak zalozysz konto masz juz notebooki na ktorych mozesz pracowac, w srodowisku wgrane sa juz najbardziej popularne biblioteki pod ML/DS (gorzej gdy chcesz cos zrobic lokalnie, ale wtedy sciagasz anaconde i masz to samo).
2
Jasnowidz napisał(a):

A dlaczego ksiazki, w dzisiejszej epoce digital...

Bo mają jakikolwiek technical review?
Bo jak kurs jest w formie filmików nie do wszystkich trafia?

0

Cześć , a znacie jakieś książki dobre książki Polsko języczne do nauki Pythona i DS .

1 użytkowników online, w tym zalogowanych: 0, gości: 1, botów: 0